Экстремальная комбинаторика − один из самых красивых разделов дискретной математики. С одной стороны, в нем очень много глубокой математики. С другой стороны, экстремальная комбинаторика имеет множество приложений в Сomputer Science.
В воркшопе примут участие два крупнейших специалиста в области экстремальной комбинаторики − Петер Франкл и Вениамин Судаков. Также перед слушателями выступят сотрудники лаборатории продвинутой комбинаторики и сетевых приложений МФТИ, которая тесно взаимодействует с группой исследований и преподавания в МФТИ Яндекса.
Лекции пройдут на английском языке без перевода. Стойка регистрации работает на протяжении всего воркшопа.
Участие в воркшопе бесплатно, но количество мест ограничено. Требуется регистрация на сайте https://events.yandex.ru/events/sci....
- 16:30 Регистрация
- 17:00 Дмитрий Шабанов (МФТИ, МГУ) Panchromatic 3-coloring of a random hypergraph
The talk deals with colorings of random hypergraphs. A vertex 3-coloring is called panchromatic for a hypergraph H if every edge of H meets every color of 3 colors under this coloring. By using the second moment method we obtain very tight bounds for the probability threshold for the property that a random hypergraph in the binomial model admits a panchromatic 3-coloring.
- 17:30 Данила Черкашин (МФТИ, СПбГУ) Coloring cross-intersecting families
- 18:00 Максим Жуковский (МФТИ, Яндекс) On the Le Bars conjecture
In 2001, Le Bars proved that there is an existential second order property that has no limit probability for the uniformly chosen random graph G(n,1/2). He conjectured that two first order quantifiers are enough to construct such a sentence. We prove that the conjecture is true for G(n,p) where p equals either (3-\sqrt{5})/2 or (\sqrt{5}-1)/2.
- 18:30 Cергей Киселев (МФТИ) On the chromatic numbers of random subgraphs of Kneser graphs
A Kneser graph KG_{n,k} is a graph whose vertices are all k-element subsets of [n] and two vertices are connected if and only if the corresponding sets do not intersect. Kneser conjecture states that the chromatic number of such graph is n 2k + 2. The conjecture was proved by Lov\asz with the help of a topological approach.
A random subgraph KG_{n,k}(p) is a spanning subgraph of KG_{n,k} containing each edge of KG_{n,k} with probability p. The chromatic numbers of random subgraphs of Kneser graphs and their generalizations were firstly studied by Bogoliubskiy, Gusev, Pyaderkin, and Raigorodskii. A related research was done by Bollob\as, Narayanan, Raigorodskii and others. Kupavskii obtained the best known lower bounds for the chromatic numbers of KG_{n,k}(p). He used a Lov\asz type topological approach.
In this talk, I will give new upper and lower bounds for the chromatic numbers of KG_{n,k}(p) using a purely combinatorial approach.
- 19:00 Перерыв
- 19:20 Péter Frankl (Hungarian Academy of Sciences, Budapest) Extremal set theory
- 20:20 Benjamin Sudakov (ETH, Zurich) Tower-type bounds for unavoidable patterns in words
A word w is said to contain the pattern P if there is a way to substitute a nonempty word for each letter in P so that the resulting word is a subword of w. Bean, Ehrenfeucht and McNulty and, independently, Zimin characterised the patterns P which are unavoidable, in the sense that any sufficiently long word over a fixed alphabet contains P. Zimins characterisation says that a pattern is unavoidable if and only if it is contained in a Zimin word, where the Zimin words are defined by Z_1 = x_1 and Z_n=Z_{n-1} x_n Z_{n-1}. We study the quantitative aspects of this theorem, obtaining essentially tight tower-type bounds for the function f(n,q), the least integer such that any word of length f(n, q) over an alphabet of size q contains Z_n.